

RUHR-UNIVERSITÄT BOCHUM
SUPPORTING THE
RESIDENTIAL ENERGY TRANSITION WITH
MULTI-OBJECTIVE OPTIMISATIONS

Decision support for the energy transition

For many years...

The energy transition faces challenges: economic, environmental, technical and social

Every day...

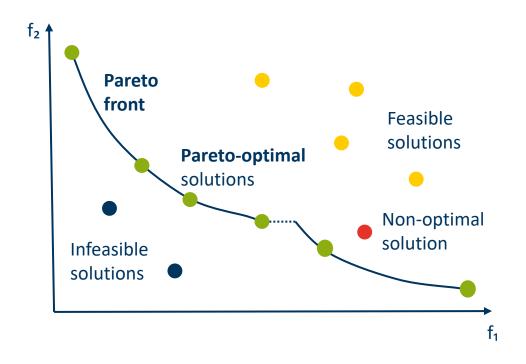
Energy system models inform stakeholders and decision makers

However...

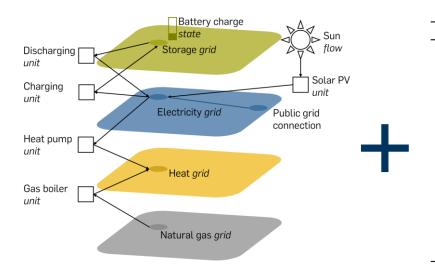
Optimised scenarios are not realised due to lack of individual acceptance or behaviour

Therefore...

Considering people's multiple interests in models balances conflicting interests and includes the human dimension to ultimately generate more feasible outcomes



Implement and use


multi-objective energy system optimisation models to support the residential energy transition

What is a multi-objective optimisation?

Multi-objective energy system optimisation model

Algorithm 1: Parellelised calculation of a subset of the Pareto front

Input: Energy system data, number and distribution of emission caps represented by $d(\cdot, \cdot)$

Output: Subset of Pareto front, energy system designs

1 do in parallel

$$\begin{array}{c|c} \mathbf{2} & p_{\text{CO}_2}^{\text{lowestEmission}} = \min_{x \in V} v_{\text{CO}_2}^{\text{obj}}(x) \\ \mathbf{3} & p^{\text{lowestCost}} = \min_{x \in V} v_{\text{BB}}^{\text{obj}}(x) \end{array}$$

4 do in parallel

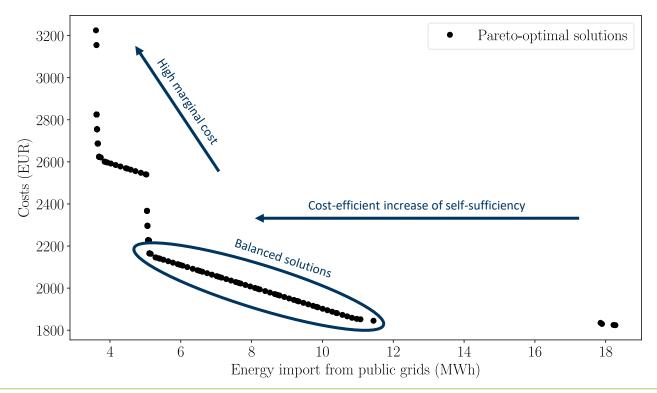
$$p^{\text{highestCost}} = \min_{x \in V} v_{\text{BB}}^{\text{obj}}(x) \text{ s.t. emission}(x) = p_{\text{CO}_2}^{\text{lowestEmission}}$$

$$p^{\text{highestEmission}}_{\text{CO}_2} = \min_{x \in V} v_{\text{CO}_2}^{\text{obj}}(x) \text{ s.t. } \text{cost}(x) = p^{\text{lowestCost}}$$

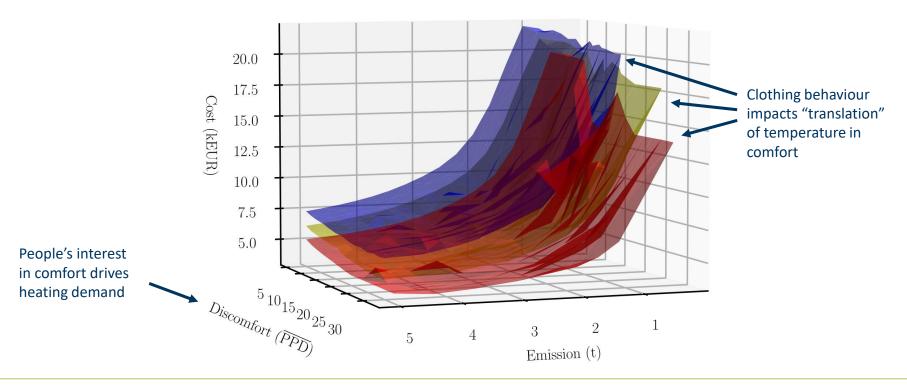
7 for $p_{\text{CO}_2}^{\text{emissionCap}}$ in $d(p_{\text{CO}_2}^{\text{lowestEmission}}, p_{\text{CO}_2}^{\text{highestEmission}})$ do in parallel 8 $|\min_{x \in V} v_{\text{AUGMECON}}^{\text{obj}}(x)|$ s.t. $\text{emission}(x) = p_{\text{CO}_2}^{\text{emissionCap}} + s$

9 return Energy system model outputs of all optimisations

Backbone


Applied Mathematics and Computation 2009.

AUGMECON



1. Balancing conflicting objectives efficiently

2. Including human dimension: Thermal comfort

Huckebrink, Finke and Bertsch, Optimisation of costs, carbon emissions and thermal comfort in a building-level energy system model, Work in progress.

Thank you for your attention!

Considering multiple objectives in energy planning helps balancing conflicting interests and including the human dimension.

