Schindeltechnologie für Hocheffiziente Silicium Photovoltaik Module

Vorstellung des Promotionsvorhabens von M.Sc. Nils Manuel Klasen

Prof. Dr. Stefan Glunz, Fraunhofer Institut für Solare Energiesysteme ISE Prof. Dr. Marc Kamlah, Karlsruher Institut für Technologie (KIT)

Energiecampus 2017

"Meine Stadt von morgen: Wie sieht die Energielandschaft der Zukunft aus?"

Stiftung Energie & Klimaschutz Baden-Württemberg

Karlsruhe, 17.11.2017 www.ise.fraunhofer.de

Die Stadt von morgen...

- ...hat wenig Platz
- ...einen hohen Energiebedarf; z.B. für Elektromobilität

Die Stadt von morgen...

- …hat wenig Platz
- ...einen hohen
 Energiebedarf;
 z.B. für Elektromobilität
- ...muss einen Beitrag zur Senkung des CO₂-Ausstoßes leisten. Städte verursachen 80 % des CO₂-Ausstoß [1].

Die Stadt von morgen...

- ...hat wenig Platz
- ...einen hohen Energiebedarf; z.B. für Elektromobilität
- ...muss einen Beitrag zur Senkung des CO₂-Ausstoßes leisten. Städte verursachen 80 % des CO₂-Ausstoß [1].
- Sonneneinstrahlung deckt in < 80 min Jahres-
 Primärenergiebedarf der
 Weltbevölkerung

2

Photovoltaisches Modul (PV-Modul)

- Silicium Solarzelle:
 - 200 µm dick.
 - 156x156 mm² // 6"
 - Sehr empfindlich.

Metallisierung

Spannung $V \approx 0.5 V // \text{Strom } I \approx 9 A$ Wirkungsgrad $\eta \approx 22 \%$

Photovoltaisches Modul (PV-Modul)

- Silicium Solarzelle:
 - 200 µm dick.
 - 156x156 mm² // 6"
 - Sehr empfindlich.
- **PV-Modul:**
 - Schutz der Solarzellen.
 - Elektrische Verschaltung mehrerer Solarzellen.
 - Wirkungsgradverluste bei Modulintegration: geometrisch, optisch, elektrisch

Spannung $V \approx 30 V \parallel$ Strom $I \approx 9 A$ Wirkungsgrad $\eta \approx 18 \%$

Werden die verfügbaren Flächen kleiner, müssen die Wirkungsgrade wachsen.

 $P_{el} = \mathbf{A} \downarrow * P_{Licht} * \boldsymbol{\eta} \uparrow$

Werden die verfügbaren Flächen kleiner, müssen die Wirkungsgrade wachsen.

 $P_{el} = \mathbf{A} \downarrow * P_{Licht} * \boldsymbol{\eta} \uparrow$

- Zwei Optionen:
 - \bullet $\eta_{Solarzelle}$ \uparrow

 η_{Modul} \uparrow

Werden die verfügbaren Flächen kleiner, müssen die Wirkungsgrade wachsen.

 $P_{el} = \mathbf{A} \downarrow * P_{Licht} * \mathbf{\eta} \uparrow$

Zwei Optionen:

- $\eta_{Solarzelle}$ \uparrow
- η_{Modul} \uparrow

Werden die verfügbaren Flächen kleiner, müssen die Wirkungsgrade wachsen.

 $P_{el} = \mathbf{A} \downarrow * P_{Licht} * \mathbf{\eta} \uparrow$

- Zwei Optionen:
 - $\eta_{Solarzelle}$ \uparrow
 - η_{Modul} \uparrow

Δ

Werden die verfügbaren Flächen kleiner, müssen die Wirkungsgrade wachsen.

 $P_{el} = \mathbf{A} \downarrow * P_{Licht} * \mathbf{\eta} \uparrow$

- Zwei Optionen:
 - \bullet $\eta_{Solarzelle}$ \uparrow
 - η_{Modul} \uparrow

© Fraunhofer ISE

[2] Richter, Armin; Hermle, Martin; Glunz, Stefan W. (2013): Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells. In: *IEEE J. Photovoltaics* 3 (4), S. 1184–1191.
[3] Yoshikawa, Kunta et al. (2017): Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. In: *Nat. Energy* 2 (5), S. 17032.

Werden die verfügbaren Flächen kleiner, müssen die Wirkungsgrade wachsen.

 $P_{el} = \mathbf{A} \downarrow * P_{Licht} * \boldsymbol{\eta} \uparrow$

Zwei Optionen:

 $\eta_{Solarzelle} \uparrow$ $\eta_{Modul} \uparrow$

→ Erforschung eines Konzepts für Effizienzsteigerung in Modulen

© Fraunhofer ISE

[2] Richter, Armin; Hermle, Martin; Glunz, Stefan W. (2013): Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells. In: *IEEE J. Photovoltaics* 3 (4), S. 1184–1191.
[3] Yoshikawa, Kunta et al. (2017): Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. In: *Nat. Energy* 2 (5), S. 17032.

Potential: Verbindungstechnologie

- Herkömmlich: Zellverbinder
 - 6" Solarzellen (156x156 mm²).
 - Lot-ummantelte Kupfer Zellverbinder.
 - Bis zu 6 Verbinder / Zelle.

Potential: Verbindungstechnologie

- Herkömmlich: Zellverbinder
 - 6" Solarzellen (156x156 mm²).
 - Lot-ummantelte Kupfer 7ellverbinder
 - Bis zu 6 Verbinder / Zelle.
- Schindelverschaltung [4,5]
 - Überlappende Solarzellen.
 - Streifen: ~ 1/6 einer 6" Zelle.
 - Fügestelle: Lot oder Leitkleber.

© Fraunhofer ISE

[4] Donald C. Jr., Dickson (1960): Photovoltaic semiconductor apparartus or the like. Angemeldet durch Hoffmann Electronics Corp. Veröffentlichungsnr: US 2938938 A. [5] Klasen, Nils; Kraft, Achim; Eitner, Ulrich (2017, tbp): Shingled Cell Interconnection: Towards a new Generation of Bifacial PV Modules. Presented at: 7th Metallization and Interconnection Workshop, Konstanz. In: Energy Procedia

Vorteile Schindelverschaltung

- Keine Verschattung durch Zellverbinder.
- Keine Zellzwischenräume.

Verschattung Zelle Konventionelle Zellverbindung Zelle Zelle Verschattung Schindelverschaltung: Steigerung aktive Modulfläche

Vorteile Schindelverschaltung

- Keine Verschattung durch Zellverbinder.
- Keine Zellzwischenräume.
- Keine ohmschen Verluste im Zellverbinder.
- Kleinere Solarzellen verringern elektrischen Strom in der Zellmatrix.
- Reduzierung des elektrischen Stroms senkt ohmsche Verluste drastisch.
 - $I_{ph} \propto A$
 - $\blacksquare \quad P_{loss} \propto I_{ph}^2$

Zentraler Aspekt der Promotion

Schindelmodul

- Leistungsdichte: 240 $\frac{W}{m^2}$ (aktuell ~180 $\frac{W}{m^2}$)
- Bei Erreichen des Leistungsziels, ca. 25 % Flächeneinsparung möglich
- Hohe Ästhetik für Gebäude- bzw. Fassadenintegration

Vielen Dank für Ihre Aufmerksamkeit!

Fraunhofer-Institut für Solare Energiesysteme ISE

Nils Klasen

www.ise.fraunhofer.de

www.moduletec.de

nils.klasen@ise.fraunhofer.de

© Fraunhofer ISE